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A heat calculation based on the assumption of isothermality sometimes
leads to large errors. Local overheating can affect the normal opera-
tion of a component. Hence, an accurate heat calculation requires
the solution of the heat-conduction equation, which is difficult for
components of complicated shape. This paper gives an example of
such a calculation.

In some electrolytic baths the steel cover is a cur-
rent-conducting part and serves to distribute the cur-
rent to the anodes. In this case busbars are fitted to
the steel cover and connect adjacent electrolytic baths
in series. The cover is a steel plate with steel ribs
welded onto it lengthwise. The cover has rows of holes
which are arranged symmetrically relative to the ribs
and serve for the passage of the anodes through the
cover. The ribs have contacts which transmit the cur-
rent from the cover to the anodes. The underside of
the cover and the regions around the holes on the top
surface are rubber-coated. The outer busbar is con-
nected to the cover between points A and B (Fig. 1).
The current delivered to an anode depends on the dis-
tance of the particular anode from the cathode. This
distance is adjusted from the reading of current-mea-
suring probes. In the ideal case the currents de-
livered to the anodes should be equal. If the current
is not distributed uniformly to the anodes equalizing
currents are set up in the cover. The heat released
in the cover is dissipated by convection and radiation
by the flat surfaces and ribs and is removed by con-
duction through the cover to adjacent, less heated
regions, from which it escapes to the surroundings.
This process leads to a nonuniform temperature dis-
tribution on the cover. The temperature should be
highest in region I (Fig. 1). Since part of the cover is
rubber~-coated, it is essential tokeep the coating intact
by creating conditions for the release and removal of
heat from the cover so that the temperature of the hot-
test parts does not exceed the limit for stability of the
rubber coating. The heat calculation for a cover with
all these factors taken into account presents great
technical difficulties.

' Digital electronic computers can be used to calcu-
late the temperature profile along the cover by solv-
ing the heat-conduction equation with due regard to
the variable heat transfer.

An accurate heat calculation for the cover of an
electrolytic bath necessitates the solution of the heat-
conduction equation for a body of complex shape (Fig.
1) with distributed heat sources and sinks. However,
for an approximate upper estimate of the possible
temperatures in the case of a symmetrical current

distribution the problem can be reduced to a one-
dimensional one. In fact, the maximum temperature
should occur in the central cross section of the cover.

Fig. 1. Diagram of cover of R-100 electrolytic bath.

Hence, in this section the derivative of the tempera-
ture along the cover will be 0 (necessary condition
for a maximum). Hence, if we cut out the central
cross section of the cover (Fig. 1) we can assume that
the temperature in this section is independent of the y
coordinate and the heat flow through the end faces (in
the direction along the bath) is zero, i.e., we can
assume that the end faces are thermally insulated.

Thus, the problem is reduced to the determination
of the temperature profile in a bar of variable cross
section with lateral projections (ribs) (¥ig. 2). This
problem requires the solution of a system of three one-
dimensional heat-conduction equations (we are inter-
ested only in the steady-state solution and, hence, we
put 8Ti/8t = 0)
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The equations of the system are connected with one
another by the condition that the total heat flux at
branch points A and B (Fig. 2) is zero. Mathemati-
cally this condition is written as follows:
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Fig. 2. Heat calculation diagram.

Thus, it is necessary to solve the boundary value
problem (1) and (2) for a set of three ordinary differ-
ential second-order equations connected by condition
(3). This is a fairly difficult computational problem,
but, since the height of the ribs is insignificant in
comparison with the transverse dimensions of the
cover, we can assume as an approximation that the
rib temperature is constant and replace the ribs by
equivalent heat sinks and sources with due regard to
the total amount of heat released in the rib and the heat
removed from the surface of the rib. The problem then
reduces to finding the solution of one ordinary non-
linear differential equation of the second order with
specified boundary conditions,
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The first boundary condition means that at the edge

of the cover where current is being conducted there is
a heat source due to contact resistance. The second
boundary condition indicates that at the opposite edge
of the cover heat exchange with the surroundings takes
place. Function p(T) has the usual form

o (T) = po [l +a(T — 20)].
Functions A and k have the form [1]
A (T) = 3.25(635 — T)- 102 4- 28.8,
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The problem was solved on a Minsk-2 computer by
the Runge-Kutta method. Since this method only solves
systems of differential equations with initial condi-
tions (the Cauchy problem), the program was compiled
in the following way. The machine chose the tempera-
ture value on the left end so that when the first boun-
dary condition was fulfilled the solution of the equation
satisfied the boundary condition on the right end with
a specified degree of accuracy. Hence we obtained the
solution of the boundary problem (4), (5) with specified
accuracy.
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We note that problem (1) with conditions (2) and (3)
can be solved in a similar manner by the Runge-Kutta
method. This entails choosing the temperature value
on the left end Txlx,:o so that conditions (2) and (3)
are satisfied. In this case the algorithm of the solu-
tion is as follows.

A value Tjx =, is assigned and a value of
(dT;/dx;) | x1=¢ satisfying the boundary condition
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is determined. The first equation of system (1) for the
region from x,=0 to x; = a (i. e. to the first branch
point) is solved. The second equation of system (1)
for the region from x, = 0 to x, = I, with initial condi-
tions
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dT,
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is solved.

The method of successive approximations is used
to choose a value of «, so that at x, = I, the boundary
condition
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is satisfied. We note that the upper limit of a4, is de-
termined from the condition that the maximum heat
flux in the lower section of the rib cannot exceed the
amount of heat removed by the rib from the cover with
the rib temperature constant and equal to the tempera-
ture of its base,
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Then from the condition that the total heat flux at
the branch point is zero, we obtain
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Fig. 3. Surface temperature distribution along
cross section of cover: 1) Calculated without
allowance for removal of heat by ribs; 2) ex-
perimental (from mean values); 3) calculated
with allowance for removal of heat by ribs.

The first equation of the system for the region from.
X, = ato x; = b (i. e. to the second branch point) is
solved with initial conditions
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and (5b). The procedure carried out at the first branch
point is repeated at the second branch point, i.e., the
coefficient @, is determined. After this, the solution
of the first equation of system (1) for the region from
x; = b to x; = I; with initial conditions
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is completed. The calculation gives some values of
T,(!,) and (dTy/dx4)(};) which may not satisfy the cor-
responding boundary condition on the right end of the
cover. The whole solution procedure is then repeated
with a new initial value of Ti(x1)Ix,=0- The method of
successive approximations is used to find the value
Tlx,=p at which the boundary condition on the right
end (x; = ;) is satisfied with specified accuracy.

We calculated (4) and (5) for several different cur-
rent loads on the electrolytic bath (I =75, 80, and 100
kA) and with different simplifying assumptions: a) the
ribs are absent (usual one-dimensional nonlinear
problem); b) the ribs are replaced by equivalent sinks
and sources on the assumption thatthe temperature is
constant over the rib height and is equal to the tem-
perature at the base of the rib.

It is obvious that the solution of (4) and (5) with as-
sumptions a and b gives upper and lower estimates.
respectively, of the temperature on the surface of the
cover Ty(x,), obtained by the solution of system (1)—(3).
In fact, in the case of assumption a the removal of
some of the heat from the rib is neglected and, hence,
the cover temperature is overestimated. In the case of
assumption b the heat transfer from the rib surface
is overestimated and, hence, the temperature on the
surface of the cover is less than the true value.

The results of the calculation are shown in Fig. 3.
Curve 1 corresponds to assumption a and curve 3 to
assumption b. As the figure shows, the greatest dif-
ference between the curves is about 5° C. Hence, in
this case there is no need to seek an exact solution of
problem (1)—(3), which must lie between curves 1 and
3.

Below we give the results of the experimental mea-
surements and compare them with the results of cal-
culation. The surface temperature was measured by
an instrument of accuracy class 2.5 with a scale from
20 to 120° C.

The choice of the points for measurement of the
temperature over the cross section of the cover was
determined by its specific design: point 1 was located
directly at the point of connection of the anode busbar;
2 lay in front of the first row of anode rods, at the
edge of the rubber coating; 3 lay in the gap between
the anode rods of the first row (the rubber coating at
the measurement points was removed); 4 lay in front

167

of the first rib, from which the current was fed through
a wire to the first and second rows of anode rods; 5

lay in front of the third row of anode rods, at the edge
of the rubber coating; 6 lay midway between the third
row of anode rods; 7 lay after the fourth row of anode
rods, at the edge of the rubber coating (Fig. 3).

A comparison of the results of calculation and mea-
surements showed that the calculated curves were in
good agreement with the experimental data. A charac-
teristic feature was the increase in temperature in a
very narrow section of the cover (in the gap between
the anode rods of the first row). The difference of
several degrees C in the hot part of the cover must
be attributed to the inaccuracy of the chosen coef-
ficients and to the simplifying assumptions regarding
the ribs. The higher value of the actual temperature
of the cover in comparison with the calculated value
in the less hot region can be attributed fo the as-
sumed absence of heat transfer between the underside
of the cover and the gas inside the electrolytic bath
(the temperature difference here is 30—40° C). The
agreement between the calculated and experimental
temperatures is sufficiently good to make the proposed
method of calculation suitable for the design of elec-
trolytic baths.

The temperature distribution over the cover should
be calculated as a check after its main dimensions
have been determined from considerations of strength
and a suitable shape has been adopted. At this stage
the initial form of functions S(x) and 8,(x) is assigned.
If the heat calculation shows the presence of regions
with temperature above the permissible value, the
design or the current switching system must be al-
tered and the calculation performed again. These
operations are continued until a satisfactory result
is obtained. To allow for the action of equalizing cur-
rents passing along the axis of the cover we recom-
mend assigning an increased current load to one ele-
ment of the equivalent circuit.

NOTATION

S(xj) is the cross-sectional area of the correspond-
ing region of rod; p is the resistivity of the cover ma-
terial; A is the thermal conductivity; Ij is the current
in the corresponding region of the cover; Tj is the
temperature, °C; n is the conversion coefficient, equal
to 0.86 J/kcal; k is the heat transfer coefficient; S; is
the area of heat-losing surface; Ty is the ambient tem-
perature, °C.
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